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Abstract 

In this article, we begin with classical Lebesgue spaces Lp with p being constant and review the various 
properties such as completeness and duality of the space. To this end, we also discuss the boundedness of 
Hardy-Littlewood maximal function and interpolation on such spaces. Finally, we focus our attention on 
variable exponent Lebesgue spaces and review various results on it. Moreover, we also see the differences in 
between these Lebesgue spaces. 
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1. Introduction 

In mathematics, Lp spaces, are generated using a 
natural generalization of the p-norm for finite-
dimensional vector spaces. They are also popularly 
known as Lebesgue spaces, which is named after 
Henri Lebesgue. Lp spaces form an important class 
of Banach spaces in functional analysis. Moreover, 
they also form of topological vector spaces. They 
have very important roles in the mathematical 
analysis of measure and probability spaces. Thus, 
the Lebesgue spaces are used also in the theoretical 
discussion of problems in physics, statistics, finance, 
engineering, and other disciplines. One of the nice 
property of these Lebesgue spaces is that after the 
number of natural operations on Lebesgue spaces, it 
again forms the same space. There are number of 
types of these Lebesgue spaces such as classical 
Lebesgue space 𝐿", with 𝑝 being a constant, weak 
Lebesgue spaces, weighted Lebesgue spaces and 
variable exponent Lebesgue spaces 𝐿"(.) with 𝑝(. ) 
begin variable. The variable exponent Lebesgue 
space is considered as the most general type of 
Lebesgue space. In this article, we first begin with 
classical Lebesgue space which is the simplest type 
of space on all such spaces. We review the various 
property on classical Lebesgue space such as 
completeness, separability, duality, interpolation and 
boundedness of some maximal functions on these 
Lebesgue spaces.  
 
 
 
 

We will focus more on variable exponent Lebesgue 
space in which we review the various properties 
which were discussed in the classical case and see 
how these property pass from a simple to general 
space.  We begin with classical Lebesgue space: 
 

1.1. Classical Lebesgue Space: 

Lebesgue space 𝐿" with 1 ≤ 𝑝 ≤ ∞ is known as 
classical Lebesgue space. We first recall the 
definition: 
 
Definition: Let 1 ≤ 𝑝 < ∞. The Lebesgue space 
defined on a set Ω, denoted by 𝐿"(Ω), is the space of 
all equivalent class of measurable functions  𝑓: Ω →
ℝ for which ‖𝑓‖23(4) is finite where  

‖𝑓‖23(4) = 67 |𝑓(𝑥)|"	𝑑𝜇	
4

=

>
3

	. 

Moreover, when 𝑝 = ∞, we define 

‖𝑓‖23(4) = 𝑒𝑠𝑠 sup
D∈4

|𝑓(𝑥)|. 

For any two measurable functions 𝑓, 𝑔 and 𝛼 being 
scalars, we have for 1 ≤ 𝑝 ≤ ∞ 

a. ‖𝑓‖23(4) ≥ 0 
b. ‖𝑓‖23(4) = 0 if and only if 𝑓 = 0 a.e. 
c. ‖𝛼𝑓‖23(4) = |𝛼|‖𝑓‖23(4). 
d. ‖𝑓 + 𝑔‖23(4) ≤ ‖𝑓‖23(4) + ‖𝑔‖23(4)   

This shows that under a.e. equal setting, ‖. ‖23(4) 
defines a norm and hence 	𝐿"(Ω) is normed space. 
In addition to this, under this norm, the classical 
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Lebesgue space is a complete normed space as 
given by the Riesz-Fischer theorem and is stated as 
follows: 
 
Theorem [Riesz-Fischer]: Let Ω be a measurable 
set and 1 ≤ 𝑝 ≤ ∞. Then 𝐿"(Ω) is a complete 
normed space i.e. 𝐿"(Ω)	 is a Banach space. 
 
Moreover, 𝐿"(Ω) is also a separable space as given 
by the following theorem: 
Theorem:  Let Ω be a measurable set and 1 ≤ 𝑝 ≤
∞. Then 𝐿"(Ω) is separable. 
 
For the classical Lebesgue space, we next state the 
result on the duality of the space: 
Theorem: Let 1 ≤ 𝑝 < ∞ and 𝑞	be its conjugate 
index such that L

"
+ L

M
= 1. Then the dual space of 

𝐿",	 denoted by (𝐿")∗,  is the space 𝐿M	 in the 
following sense: 
For all bounded linear functional ℎ on 𝐿" there is an 
unique function 𝑓 ∈ 𝐿M	such that  

ℎ(𝑔) = 7 𝑔(𝑥)𝑓(𝑥)𝑑𝜇(𝑥)
4

 

for all 𝑔 ∈ 𝐿M.  Also ‖ℎ‖(23)∗ = ‖𝑓‖2P. 
 We note that the above result is not true when 𝑝 =
∞.  Readers are suggested to refer [6] for the proof 
of the above theorems. 
We next continue our discussion of classical 
Lebesgue space in connection of boundedness of 
Hardy-Littlewood maximal function. So let us 
consider the classical Lebesgue space  𝐿"(Ω).  In 
order to do so, we first recall the definition of 
Hardy-Littlewood maximal function. 
 
Definition: Let 𝑓 ∈ 𝐿QRSL (ℝT)  and 𝑥 ∈ ℝT. Then the 
Hardy-Littlewood maximal function associated to 𝑓 
is denoted by 𝑀𝑓 and is defined as  

𝑀𝑓(𝑥) = sup
VWX

1
|𝐵(𝑥, 𝑟)|7 |𝑓(𝑦)|𝑑𝑦

\(],V)
 

 where the supremum is taken over all balls 𝐵(𝑥, 𝑟) 
centered at the point 𝑥 and radius 𝑟. Therefore, this 
is centered Hardy-Littlewood maximal function.  

Similarly, we can define uncentered Hardy-
Littlewood maximal associated to 𝑓, denoted by  
𝑀^𝑓, is defined as:  

𝑀^𝑓(𝑥) = sup
VWX,]∈\

1
|𝐵|7

|𝑓(𝑦)|𝑑𝑦
\

 

where the supremum is taken over all balls 𝐵 
containing 𝑥. These two definitions are equivalent as 

we can show that  𝑀𝑓(𝑥) ≤ 𝑀^𝑓(𝑥) ≤ 2T𝑀𝑓(𝑥)	 
and hence we do not differentiate between these two 
forms.  We now state a result on boundedness of  
Hardy-Littlewood Maximal  function on  𝐿"(ℝT).  
 
Theorem: (Hardy-Littlewood, 1930) Let 𝑓 be a 
measurable function on ℝT. 
Then  

a) If 𝑓 ∈ 𝐿"(ℝT), for 1 ≤ 𝑝 ≤ ∞, then 𝑀𝑓 is 
finite a.e. 

b) If 𝑓 ∈ 𝐿L(ℝT), then for all 𝜆 > 0, we have  

|{𝑥 ∈ ℝT:𝑀𝑓(𝑥) > 𝜆}| ≤
3T

𝜆 	7
|𝑓|𝑑𝑥.

ℝe

=
3T

𝜆
‖𝑓‖2>(ℝe) 

 
c) If 𝑓 ∈ 𝐿"(ℝT), 1 < 𝑝 ≤ ∞, then 𝑀𝑓 ∈

𝐿"(ℝT) and ‖𝑀𝑓‖" ≤ 𝐴"	‖𝑓‖" where 𝐴" 
is constant depending only on 𝑝 and 𝑛. 

 
Some remarks are in order: 
i. (𝑏) says that Hardy-Littlewood maximal 

operator M is of weak-type (1, 1). We note that 
(𝑐) is not true for 𝑝 = 1. In fact,  one can show 
that ‖𝑀𝑓‖L = ∞ whenever 𝑓 ∈ 𝐿L(ℝT) with 𝑓 
identically zero. As an example we can take 
𝑓(𝑥) = χk where 𝐴 = [−1, 1]. For this 
characteristic function, we have 𝑓 ∈ 𝐿L(ℝ) but 
the maximal function 𝑀𝑓 ∉ 𝐿L(ℝ). Also note 
that (𝑎) and (𝑏) are obvious if 𝑝 = ∞. 

ii. (𝑐) says that the 𝑀 is of strong type (𝑝, 𝑝) for 
1 < 𝑝 ≤ ∞. Consequently,  𝑀	 is of weak type 
(𝑝, 𝑝) for 1 < 𝑝 < ∞.  This follows simply using 
the Chebychev's inequality and strong type (𝑝, 𝑝) 
condition. 

After discussing the boundedness of H-L maximal 
function, we next discuss the interpolation spaces of 
Lebesgue spaces. We consider the situation on the 
interpolation spaces in between Lebesgue spaces 𝐿L 
and 𝐿" with 1 < 𝑝 < ∞.	 For this we first recall 
some basic definitions from [1]. 
Let 𝑥∗ denote the nonincreasing arrangement of |𝑥| 
and ‖. ‖q	 denote the norm on a space 𝑋.		A Banach 
space 𝑋 of measurable functions on the interval 
[0, 1] is said to be symmetric if  𝑦 ∈ 𝑋 and 𝑥∗(𝑡) ≤
𝑦∗(𝑡) for 𝑡 ∈ [0, 1] imply that 𝑥 ∈ 𝑋 and ‖𝑥‖q ≤
‖𝑦‖t. 
 A symmetric space 𝑋 is said to satisfy Fatou 
property if for any sequence {𝑥T} in 𝑋 with 𝑥T ≥
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0, 𝑥T ↗ 𝑥  and sup
v
‖𝑥T‖q < ∞,	 we have 𝑥 ∈ 𝑋 and 

corresponding norm sequence ‖𝑥T‖q ↗ ‖𝑥‖q.   
The symmetric space 𝑋 is said to satisfy absolutely 
continuous norm if for any arbitrary 𝑥 ∈ 𝑋 and any 
sequence {𝑥T} of measurable functions on [0, 1] 
such that  |𝑥| ≥ 𝑥T ≥ 0 and 𝑥T ↓ 0 imply that 
‖𝑥T‖q → 0. Moreover, a symmetric space 𝑋 is 
separable iff 𝑋	possesses an absolutely continuous 
norm.  We now discuss results on interpolation 
spaces in Lebesgue spaces.  Boyd [2] proved that: 
 
Theorem: Let  𝑋 be a symmetric space of 
measurable functions defined on [0, 1].  If Boyd 
indices of the space 𝑋 satisfy the inequalities  

1
𝑞 < 𝛼(𝑋) ≤ 𝛽(𝑋) <

1
𝑝 

and  X satifies Fatou property then  𝑋 is an 
interpolation space between the spaces 𝐿" and L{. 
 
This theorem shows that any bounded linear 
operator T is in the space L} and L{ is also bounded 
in the space X. Malingranda[3] showed that the 
condition in Boyd's theorem in the case q = ∞ can 
be weakened. Precisely, the space X is an 
ineterpolation space between the Lebesuge spaces 
LL and L∞ can be proved using only the one-side of 
Boyd's estimate i.e. β(X) < L

}
, 1 ≤ p < ∞. To this 

end, we now state the most general results on 
interpolation spaces of Lebesgue space. 
 
Theorem [Astashkin and Malingranda, 2003] 
Suppose that 1 < 𝑝 < ∞. If a symmetric space X is 
an interpolation space between LL and L∞ and the 
Boyd indices α(X) > L

}
, then the space X is also an 

interpolation space between LL and L}. 
The condition that X is an interpolation space 
beteween LL and L∞ in the above theorem is 
unavoidable. Please see [1] for the counter example. 
Astashkin and Malingranda have also generalized 
their result and their result is: 
 
Theorem [Astashkin and Malingranda, 2003] 
Suppose that 1 ≤ r	 < 𝑝 < ∞. If X is an 
interpolation space between the L�	 and L∞ and the 
Boyd indices α(X) > L

}
,  then X is an interpolation 

space between L� and L}. 

Besides classical Lebesgue space, there are other 
types of Lebesgue spaces such as weak type 
Lebesgue spaces and weighted Lebesgue spaces. We 
simply state their definitions. 
 
Weak type Lebesgue spaces: Let 𝑓 be a 
measurable function from ℝT to set of complex 
numbers and Ω ⊆	ℝT.  For 0 < 𝑝 < ∞, weak type 
Lebesgue space, denoted by 𝐿����

" (Ω), is the set of 
all measurable function 𝑓 defined on Ω for which: 

‖𝑓‖2����3 (4) = sup
�WX

𝑡	|{𝑥 ∈ Ω: |𝑓(𝑥)| > 𝑡}|
>
3 < ∞ 

  
for all 𝑡 ≥ 0. One can see that the classical 
Lebesgue space is a subset of weak type Lebesgue 
space which simply follows by the application of 
Chebychev inequality.  
 
Weighted Lebesgue spaces: By a weight 𝑤, we 
mean a non-negative locally integrable function 
defined on the given set Ω. Let 𝑤 be such a weight 
function on Ω and 1 ≤ 𝑝 < ∞. Then the weighted 
Lebesgue space on Ω, denoted by  𝐿�

" (Ω),   is the set 
of all measurable function 𝑓 defined on Ω for which  

‖𝑓‖2�3 (4) = 67 |𝑓(𝑥)|"	𝑤(𝑥)𝑑𝑥
4

=

>
3	

< ∞. 

If we take the weight function 𝑤(𝑥) = 1, then the 
weighted Lebesgue space is same as the classical 
Lebesgue space. Finally we discuss about the 
variable exponent Lebesgue space which is the 
central part of this review paper. 

1.2.  Variable Exponent Lebesgue Spaces:  

Wladyslaw Orlicz was the first person to start the 
theory of variable exponent Lebesgue spaces in the 
year 1930. He introduced the space as a special case 
of some other spaces. His theory of variable 
exponent space was studied and analyzed through at 
the end of the century.  Later on, several results and 
their applications made the mathematicians 
interested in such Lebesgue spaces. One can see that 
with very few assumptions on the variable exponent 
function, many of the classical structure and density 
theorems are valid in the variable case. Moreover, 
these results were simply obtained by the use of 
well-established methods and this methodology set 
the standard for the first part of the decade. During 
this time many positive results on the variable 
exponent Lebesgue spaces was established. Even 
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though one can find many nontrivial situations in 
which one cannot hope to extend a result known for 
a classical Lebesgue space to the variable exponent 
Lebesgue case.  

We first begin with the definition of exponent 
Lebesgue space:  
 
Definition: Let Ω ⊂ ℝT. Then the classical 𝐿", 1 ≤
𝑝 < ∞	space is the collection of all measurable 

functions 𝑓 for which the integral ∫ |𝑓|"𝑑𝜇Ω < ∞ 
with 𝜇 being the underlying measure of the space. 
Here exponent 𝑝 is a constant. Now let us replace 
the constant 𝑝 by a variable exponent 𝑝(𝑥) such that  
𝑝(𝑥): Ω → [1,∞]  is a measurable function. Then 
collection of measurable functions 𝑓	 such that the 

integral ∫ |𝑓|"(])𝑑𝜇Ω < ∞ forms a new Lebesgue 
space, known as variable exponent 𝐿" spaces. There 
are many approaches to define this space and we 
define it from [4]. 
Let 𝑓	be a complex-valued measurable function 
defined on Ω ⊂ ℝT and 𝑝: Ω → [1,∞] be 
measurable function. Then a functional 𝜌"	 defined 
on the space of complex valued measurable function 
𝑓 is given by  

𝜌"(𝑓) = 7 |𝑓(𝑥)|"(])𝑑𝜇(𝑥)
Ω\Ω�

+ ‖𝑓‖2�(4�	) 

where Ω� = {x ∈ Ω: p(x) = ∞}. This functional 
𝜌"	is called the 𝑝 −modular for the given space.  
Thus the variable exponent Lebesgue space, denoted 
by 𝐿"(.)(Ω), is the collection of all measurable 
function defined on Ω for which the p-modular 
𝜌"(𝑓/𝑡X) is finite for some 𝑡X > 0. For the norm on 
this space, we consider a functional given by: 
 

	‖𝑓‖23(.)(4) = inf �𝑡 > 0: 𝜌" �
𝑓
𝑡� ≤ 1� − − −−(1) 

Clearly, we  have   
i. ‖𝑓‖23(.)(4) ≥ 0,  

ii. ‖𝑓‖23(.)(4) = 0 if and only if 𝑓 = 0 a.e. 
iii. ‖𝛼𝑓‖23(.)(4) = |𝛼|	‖𝑓‖23(.)(4) . 

Moreover,  the triangle inequality  
‖𝑓 + 𝑔‖23(.)(4) ≤ 	‖𝑓‖23(.)(4) +	‖𝑔‖23(.)(4) 

also holds (see [4]). 
 
This shows that the functional given by (1) is a 
norm under the almost everywhere equality.  We 
now discuss various results that hold in the variable 

exponent Lebesgue space. We begin with Holder's 
inequality. For the exponent 𝑝(. ): Ω → [1,∞], we 
define conjugate index 𝑝�(. ): Ω → [1,∞] as  

1
𝑝(𝑥) +

1
𝑝�(𝑥) = 1 

with 𝑥 ∈ 	ℝT.  
 
Holder's inequality: Let  𝑝(. ): Ω → [1,∞] and 
𝑝�(. ): Ω → [1,∞] be such that  	
L

"(])
+ L

"�(])
= 1.  Then for all 𝑓L ∈ 𝐿"(.)(Ω) and 𝑓� ∈

𝐿"�(.)(Ω), we have  

7 |𝑓L(𝑥)𝑓�(𝑥)|𝑑𝑥 ≤ 𝑟(𝑝)‖𝑓L‖23(.)(4).
4

‖𝑓�‖23�(.)(4) 

where 𝑟(𝑝) = 1 + L
"�
+ L

"�
	 with 𝑝  = 𝑒𝑠𝑠 inf

D∈4
𝑝(𝑥) 

and 𝑝¡ = 𝑒𝑠𝑠 sup
D∈4

𝑝(𝑥). For the proof, please refer 

[4]. 
 
Theorem [Completeness]: Let 𝑝(. ): Ω → [1,∞] be 
a measurable function. Then the variable exponent 
Lebesgue space 𝐿"(.)(Ω)  with the norm ‖. ‖23(.)(4) is 
a complete normed space, i.e., a Banach space.  
 
For the proof of the above result, as usual we take a 
Cauchy sequence and show that it converges to a 
function in the space. See [4].  
 
Moreover, the dual space of  𝐿"(.)(Ω)  with 
𝑝(. ): Ω → [1,∞] being variable exponent, is 
denoted by 𝐿"(.)(Ω)∗ and is defined as:  
 
𝐿"(.)(Ω)∗ = ¢𝑇:	𝐿"(.)(Ω)

→ ℂ: 𝑇	𝑖𝑠	𝑙𝑖𝑛𝑒𝑎𝑟	𝑎𝑛𝑑	𝑏𝑜𝑢𝑛𝑑𝑒𝑑©. 
The norm on this space is given by: 

‖𝑇‖23(.)(4) = sup¢|𝑇(𝑢)|:	‖𝑢‖23(.)(4) ≤ 1©. 
 
In connection with the dual space, we have 
following theorem. For the proof, see [4]. 
 
Theorem:  Let 𝑝�(. ) denote the conjugate index of 
the variable exponent 𝑝(. ): Ω → ∞.  For a 
measurable function 𝑓 ∈ 𝐿"�(.)(Ω), define a 
functional 𝑇ª given by: 

𝑇ª(𝑢) = 7 𝑓(𝑥)𝑢(𝑥)𝑑𝑥
Ω
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with 𝑢 ∈ 𝐿"(.)(Ω).  Then the integral 𝑇ª𝑢	 converges 
absolutely. Moreover, the functional 𝑇ª ∈ 𝐿"(.)(Ω)∗ 
and we have  
1
3
‖𝑓‖23�(.)(4) ≤ «𝑇ª«23(.)(4)∗

≤ �1 +
1
𝑝  −

1
𝑝¡�

1
3
‖𝑓‖23�(.)(4). 

  
From the above theorem, one can conclude that 
𝐿"�(.)(Ω) ⊂ 𝐿"(.)(Ω)∗. This shows that in some 
sense, the space 𝐿"�(.)(Ω) can be  identified with the 
dual space of variable exponent Lebesgue space. In 
particular in the case of 𝑝¡ < ∞, we have a definite 
result on the dual space and is given by the 
following theorem from [4]. 
 
Theorem:  Let 𝑝¡ = 𝑒𝑠𝑠 sup

D∈4
𝑝(𝑥) < ∞ with 

𝑝(. ): Ω → [1,∞] being variable exponent.  Then for 
all linear functional 𝐹 ∈ 𝐿"(.)(Ω)∗, there exists an 
unique element  
𝑓 ∈ 𝐿"�(.)(Ω)  such that  for  𝑢 ∈ 𝐿"(.)(Ω)   

𝐹(𝑢) = 7 𝑓(𝑥)𝑢(𝑥)𝑑𝑥
Ω

. 

In addition to this, we have  
 	
1
3
‖𝑓‖23�(.)(4) ≤ ‖𝐹‖23(.)(4)∗

≤ �1 +
1
𝑝  −

1
𝑝¡�

‖𝑓‖23�(.)(4). 

 
The above theorem shows that, the space  𝐿"(.)(Ω)∗ 
is a subset of space 𝐿"�(.)(Ω). 
For the boundedness condition for Hardy-
Littlewood maximal function defined on the 
variable exponent Lebesgue space, we first discuss 
the Log-Holder condition. For a variable exponent  
𝑝(. ): Ω → [1,∞], the condition given by  

|𝑝(𝑥) − 𝑝(𝑦)| ≤
𝑐∗

log(1/|𝑥 − 𝑦|) − − −−− (1) 

for |𝑥 − 𝑦| ≤ L
�
 for 𝑥, 𝑦 ∈ ℝT	 is called local log-

Holder continuity condition. Moreover,   

|𝑝(𝑥) − 𝑝�| ≤
𝑐∗

log(𝑒 + |𝑥|) − − −−		(2) 

 
for 𝑥 ∈ ℝT  is called log- Holder decay condition at 
infinity. Here 𝑐∗, 𝑐∗   are positive constants and are 
independent of 𝑥 and 𝑦. The boundedness of Hardy-
Littlewood maximal operator on the variable 

exponent Lebesgue space is guaranteed by the 
following theorem proved in [4]. 
 
Theorem: Let 𝑝(. ) is a measurable function defined 
from ℝT	 to [1,∞]. If 1 < 𝑝  ≤ 𝑝¡ < ∞ and 
variable exponent 𝑝(. ) satisfies both local log-
Holder condition and log-Holder decay condition at 
infinity, then the Hardy-Littlewood maximal 
function defined the variable exponent Lebesgue 
space  is bounded on this space i.e. 𝑀𝑓 ∈
𝐵 °𝐿"(.)(ℝT)±. 
At the end, we see how the variable exponent 
Lebesgue space is fundamentally different from the 
classical Lebesgue space. We consider examples 
from [5]. 
Let us take Ω = [1,∞) and 𝑑𝜇 = 𝑑𝑥 and 𝑝(𝑥) = 𝑥. 
Let 𝛼 be a nonzero complex number which denotes 
the constant function 𝑥 ↦ 𝛼.  For 𝑡 > |𝛼|, one can 
show that  

7 ³
𝛼
𝑡 ³
]
𝑑𝑥 = lim

v→�

(|𝛼|𝑡 L)T − |𝛼|𝑡 L

ln(|𝛼|𝑡 L) .
�

L
 

 
This shows that 𝛼 ∈ 𝐿]. This is a contrast to the fact 
that only constant function in the classical Lebesgue 
space on [1,∞) is the zero function. Next if Ω = ℝT 
and 𝑑𝜇 = 𝑑𝑥. In this setting the translation 
invariance property of classical Lebesgue space is 
obvious. But in the variable exponent setting, there 
exists a nonzero translation that is not continuous on 
the 𝐿"(.)(ℝT). These examples motivate the fact that 
for what extent the results on the classical Lebesgue 
space can be extended to variable exponent case. 
Finally readers are suggested to refer to a paper by 
Diening, Hasto and Nekvinda [6] for some open 
problems in the variable exponent Lebesgue spaces. 
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